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Abstract. A brief review of the pion-nucleon sigma-term is given.

PACS. 13.75.Gx Pion-baryon interactions – 14.20.Dh Protons and neutrons

1 Introduction

Sigma-terms are proportional to the matrix elements

〈A|mq q̄q|A〉 ; q = u, d, s ; A = π, K, N

of scalar quark currents in the framework of QCD. These
matrix elements are of interest, because they are related

− to the mass spectrum,
− to scattering amplitudes through Ward identities,
− to the strangeness content of A,
− to quark mass ratios.
In the following the status of the πN system is con-

sidered and the implications to the strangeness content in
the nucleon are outlined.

2 The πN sigma-term

The pion-nucleon sigma-term is a measure of explicit chi-
ral symmetry breaking in QCD and it is defined as

σ =
m̂

2m
〈p|ūu + d̄d|p〉, m̂ =

1
2
(mu + md), (1)

which is the t = 0 value of the nucleon scalar form factor
σ(t)

ū′σ(t)u = m̂ 〈p′|ūu + d̄d|p〉, t = (p′ − p)2, (2)

i.e. σ = σ(t = 0). The nucleon mass is denoted by m.
The strangeness content of the proton can be defined

as

y =
2 〈p|s̄s|p〉

〈p|ūu + d̄d|p〉 (3)

(the OZI rule would imply y=0).
Algebraically σ can be written in the form

σ =
m̂

2m

〈p|ūu + d̄d − 2s̄s|p〉
1 − y

, (4)

where the numerator is proportional to the octet breaking
piece in the hamiltonian. To first order in SU(3) breaking
we have now

σ � m̂

ms − m̂

mΞ + mΣ − 2mN

1 − y
� 26 MeV

1 − y
, (5)

where the quark mass ratio takes the value

ms

m̂
= 2

M2
K

M2
π

− 1 � 25 (6)

in terms of the kaon and pion masses. Chiral perturbation
theory (ChPT) allows us to determine the combination

σ̂ = σ(1 − y) (7)

from the baryon spectrum.
For σ̂ we have:

• 26 MeV (leading order)

• 35±5 MeV, O(m3/2
q ) [1]

• 36±7 MeV, O(m2
q) [2]

• 33±3 MeV, O(m2
q) [3],

where the difference in the last two determinations is the
regularization method used, dimensional regularization [2]
or cut-off [3].

With the help of the Feynman-Hellmann theorem the
sigma-term can be extracted from the nucleon mass

σ = m̂
∂m

∂m̂
. (8)

Equivalently, employing M2 = 2m̂B,

σ = M2 ∂m

∂M2 , (9)
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where B is the scalar vacuum condensate. The quark mass
expansion of the nucleon mass [4]

m = m0 + k1M
2 + k2M

3 + k3M
4 ln

M2

m2
0

+ k4M
4 + O(M5) (10)

yields for σ

σ = k1M
2 +

3
2
k2M

3 + k3M
4{2 ln

M2

m2
0

+ 1}

+ 2k4M
4 + O(M5). (11)

Here the factors ki contain the low-energy constants ap-
pearing in the respective chiral order. Numerically

σ = (75 − 23 − 7 + 0) MeV = 45 MeV,

where the O(M2) term, k1, has been fixed by taking σ to
have the value 45 MeV [5].

3 The πN amplitude

To relate the sigma-term discussion to the scattering infor-
mation the standard representation for the πN amplitude
is adopted

TπN = ū′[A(ν, t) +
1
2
γµ(q + q′)µB(ν, t)]u. (12)

The definition of the crossing variable is

ν =
s − u

4m
= ω +

t

4m
, (13)

where ω is the pion laboratory energy. The amplitude D
is defined as

D(ν, t) = A(ν, t) + νB(ν, t) (14)

and its imaginary part can be related to the total cross
section through the optical theorem, ImD(ω, t = 0) =
k lab σ. The isoscalar (+) and isovector (–) amplitudes D±
can be written in terms of the amplitudes in the physical
channels as

D± =
1
2
(Dπ−p ± Dπ+p). (15)

4 A low-energy theorem

Chiral symmetry allows us to write at the Cheng-Dashen
point, i.e. at (ν = 0, t = 2M2

π),

Σ
.= F 2

πD̄+(ν = 0, t = 2M2
π) = σ(2M2

π) + ∆R, (16)

where Fπ is the pion decay constant, D̄+ is the isoscalar
D-amplitude with the pseudovector Born term subtracted

and ∆R is the remainder, which is formally of the order
M4

π [6]. To one-loop in ChPT (O(q3)) [7]

∆R = 0.35 MeV. (17)

One-loop in HBChPT (O(q4)) gives the upper limit [8]

∆R � 2 MeV (18)

and here it is notable that no logarithmic contribution to
order M4

π appears. This allows us to write

Σ � σ(2M2
π). (19)

What remains to be fixed in order to determine the σ is
the form factor difference

∆σ = σ(2M2
π) − σ(0). (20)

ChPT to one loop gives [7]

∆σ � 5 MeV. (21)

Dispersion analysis yields [9]

∆σ = 15.2 ± 0.4 MeV. (22)

Becher and Leutwyler obtain [4]

∆σ = 14.0 MeV + 2M4ē2, (23)

where ē2 is a renormalized coupling constant appearing
in the L(4)

N lagrangian. The constant ē2 is expected to be
small [4].

5 The Σ-term

Inside the Mandelstam triangle it is convenient to employ
the subthreshold expansion [10], where D̄+ is expanded in
powers of ν2 and t

D̄+ = d+
00 + d+

10ν
2 + d+

01t + d+
20ν

4 + d+
11ν

2t + · · · (24)

The curvature term ∆D is defined as

Σ = F 2
π (d+

00 + 2M2
πd+

01) + ∆D ≡ Σd + ∆D (25)

and it is dominated by the ππ cut giving the result [9]

∆D = 11.9 ± 0.6 MeV. (26)

The linear part Σd is a sensitive quantity due to the can-
cellation of the d+

00 and d+
01 pieces in

Σd(A) = (−91.3 + 138.8) MeV � 48 MeV (27)
Σd(B) = (−94.5 + 144.2) MeV � 50 MeV (28)

corresponding to the two solutions (A and B) discussed
in [5]. These numbers lead to Σ � 60 MeV, which is con-
sistent with the old result of Koch [11] Σ = 64 ± 8 MeV
based on hyperbolic dispersion relations.



M.E. Sainio: Pion–nucleon interaction and the strangeness content of the nucleon 91

6 The strangeness content of the nucleon

Putting all these pieces together leads to a determination
of the strangeness content of the proton

σ̂

1 − y
= Σ − ∆R − ∆σ (29)

and numerically with the solution A

35 MeV
1 − y

= (60 − 2 − 15) MeV, (30)

which gives y � 0.2 with a sizeable error. This value of y
corresponds to about 130 MeV in the proton mass being
due to the strange sea.

7 Partial wave analysis

The analysis discussed in Sect. 5 was based on the KH80
solution of the Karlsruhe group [12]. The data basis used
there contained mainly pre-meson-factory-era data and,
therefore, it is of great interest to perform a new anal-
ysis with the new data in the spirit of the Karlsruhe
group incorporating fixed-t constraints. This would hope-
fully help in fixing the value of Σ more accurately. In
the forward direction it is feasible to solve the dispersion
relations directly, but for t < 0 it is more practical to use
the expansion method [10]. E.g., for the C+ amplitude
(C = A + ν/(1 − t/4m2)B)

C+(ν, t) = C+
N (ν, t) + H(Z, t)

N∑

n=0

c+
n Zn,

where C+
N (ν, t) is the Born term, the function H is adjusted

to the asymptotic behaviour of the amplitude and Z is the
conformal mapping

Z(ν2, t) =
α − √

ν2
th − ν2

α +
√

ν2
th − ν2

, (31)

where νth = Mπ + t/4m and α is a real parameter. The
convergence and smoothing is taken care of by a conver-
gence test function

χ2
T = λ

N∑

n=0

c2
n(n + 1)3,

which is one component in the χ2 expression to be min-
imized. Other contributions include χ2

DATA and χ2
PW ,

where the latter is calculated from the previous iteration
of the partial wave solution.

To demonstrate the working of the expansion method
at t = 0 with N=40, Figs. (1) and (2) display ReC+(ω, t =
0) and σT

π+p. For the real part of the C+-amplitude there
are three data points at low energy as input and they
fix the subtraction constant appearing in the dispersion
relation for the C+.

The VPI/GWU group has recently published a partial
wave analysis [13], which does employ fixed-t constraints.
The publication does not, however, give a value for the Σ,

Fig. 1. The real part of the C+-amplitude. The crosses refer
to the tabulated values in [10]
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Fig. 2. The π+p total cross section

but indications are [14] that the number could be 20-30 %
larger than the numbers quoted above.

8 The relation Σ ↔ threshold

The issue of relating the Σ to the values of threshold pa-
rameters is an old one [15]. In general, Σ can be expressed
in terms of the threshold parameters [16]

Σ = F 2
π [L(al, τ) + (1 +

Mπ

m
)τJ+] + δ, (32)

where L(al, τ) is a linear combination of the threshold pa-
rameters al, τ is a free parameter to single out individual
scattering lengths and J+ is the integral over the isoscalar
combination of the total cross section. The remainder, δ,
contains contributions from the Born term, the ∆ and the
loop corrections. The approach of Altarelli et al. [15] cor-
responds to choosing τ = −1, but without loops. However,
at present, one has to rely on dispersion methods to ex-
tract the threshold parameters anyway, so the value of any
such formula is limited.
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9 Lattice results

ChPT permits a study of the quark mass dependence of
the nucleon mass. This makes it possible to have a con-
nection to the lattice data, where, currently, only unphys-
ically high quark masses can be dealt with. New accurate
data from the CP-PACS, JLQCD and QCDSF-UKQCD
collaborations (dynamical quarks, two flavours) give [17]

σ = 49 ± 3 MeV (33)

to O(q4) in ChPT. Another approach including the
leading nonanalytic and next-to-leading nonanalytic be-
haviour yields [18]

σ = 35 − 73 MeV. (34)

10 Conclusions

The challenge at present seems to be in determining Σ.
That involves a number of questions

− one has to deal with conflicting sets of data,
− one has to rely on the Tromborg [19] formalism

for the electromagnetic corrections even though there are
indications [20] that further improvements in this sector
should be incorporated,

− the extrapolation from the low-energy region to the
Cheng-Dashen point could, to some extent, be sensitive
to the d-waves, which otherwise cannot be fixed with the
low-energy scattering information [21].

The new direction with the lattice calculations is grad-
ually getting very interesting as far as the sigma-term
is concerned. However, further improvements, i.e. smaller
mq-values, will still be needed.
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